87 research outputs found

    SWIM: A computational tool to unveiling crucial nodes in complex biological networks

    Get PDF
    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer

    Phylogenetic analyses suggest multiple changes of substrate specificity within the Glycosyl hydrolase 20 family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Beta-N-acetylhexosaminidases belonging to the glycosyl hydrolase 20 (GH20) family are involved in the removal of terminal β-glycosidacally linked N-acetylhexosamine residues. These enzymes, widely distributed in microorganisms, animals and plants, are involved in many important physiological and pathological processes, such as cell structural integrity, energy storage, pathogen defence, viral penetration, cellular signalling, fertilization, development of carcinomas, inflammatory events and lysosomal storage diseases. Nevertheless, only limited analyses of phylogenetic relationships between GH20 genes have been performed until now.</p> <p>Results</p> <p>Careful phylogenetic analyses of 233 inferred protein sequences from eukaryotes and prokaryotes reveal a complex history for the GH20 family. In bacteria, multiple gene duplications and lineage specific gene loss (and/or horizontal gene transfer) are required to explain the observed taxonomic distribution. The last common ancestor of extant eukaryotes is likely to have possessed at least one GH20 family member. At least one gene duplication before the divergence of animals, plants and fungi as well as other lineage specific duplication events have given rise to multiple paralogous subfamilies in eukaryotes. Phylogenetic analyses also suggest that a second, divergent subfamily of GH20 family genes present in animals derive from an independent prokaryotic source. Our data suggest multiple convergent changes of functional roles of GH20 family members in eukaryotes.</p> <p>Conclusion</p> <p>This study represents the first detailed evolutionary analysis of the glycosyl hydrolase GH20 family. Mapping of data concerning physiological function of GH20 family members onto the phylogenetic tree reveals that apparently convergent and highly lineage specific changes in substrate specificity have occurred in multiple GH20 subfamilies.</p

    Exalign: a new method for comparative analysis of exon–intron gene structures

    Get PDF
    The evolution of genes is usually studied and reconstructed at the sequence level, that is, by comparing and aligning their genomic, transcript or protein sequences. However, including the exon–intron structure of genes in the analysis can provide further and useful information, for example to draw reliable phylogenetic relationships left unsolved by traditional sequence-based evolutionary studies, or to shed further light on patterns of intron gain and loss. In spite of this, no tool especially devised for this task is currently available. In this work we present Exalign, an algorithm designed to retrieve, compare and search for the exon-intron structure of existing gene annotations, that has been implemented in a software tool freely accessible through a web interface as well as available for download. We present different applications of our method, from the reconstruction of the evolutionary history of homologous gene families to the detection of as of today unknown cases of intron loss in human and rodents, and, remarkably, two never reported intron gain events in human and mouse. The web interface for accessing Exalign is available at http://www.pesolelab.it/exalign/ or http://www.beacon.unimi.it/exalign

    MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes

    Get PDF
    Understanding the complex mechanisms regulating gene expression at the transcriptional and post-transcriptional levels is one of the greatest challenges of the post-genomic era. The MoD (MOtif Discovery) Tools web server comprises a set of tools for the discovery of novel conserved sequence and structure motifs in nucleotide sequences, motifs that in turn are good candidates for regulatory activity. The server includes the following programs: Weeder, for the discovery of conserved transcription factor binding sites (TFBSs) in nucleotide sequences from co-regulated genes; WeederH, for the discovery of conserved TFBSs and distal regulatory modules in sequences from homologous genes; RNAProfile, for the discovery of conserved secondary structure motifs in unaligned RNA sequences whose secondary structure is not known. In this way, a given gene can be compared with other co-regulated genes or with its homologs, or its mRNA can be analyzed for conserved motifs regulating its post-transcriptional fate. The web server thus provides researchers with different strategies and methods to investigate the regulation of gene expression, at both the transcriptional and post-transcriptional levels. Available at and

    Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes

    Get PDF
    The first step in gene expression, transcription, is modulated by the interaction of transcription factors with their corresponding binding sites on the DNA sequence. Pscan is a software tool that scans a set of sequences (e.g. promoters) from co-regulated or co-expressed genes with motifs describing the binding specificity of known transcription factors and assesses which motifs are significantly over- or under-represented, providing thus hints on which transcription factors could be common regulators of the genes studied, together with the location of their candidate binding sites in the sequences. Pscan does not resort to comparisons with orthologous sequences and experimental results show that it compares favorably to other tools for the same task in terms of false positive predictions and computation time. The website is free and open to all users and there is no login requirement. Address: http://www.beaconlab.it/pscan

    Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63

    Get PDF
    p53 and p63 are transcription factors -TFs- playing master roles in the DNA-damage response and in the development and maintenance of pluristratified epithelia, respectively. p53 mutations are common in epithelial tumors and HaCaT keratinocytes harbor two p53 alleles -H179Y and R282Q- with gain-of-function (GOF) activity. Indeed, functional inactivation of mutp53 affects the growth rate of HaCaT. We investigated the strategy of mutp53, by performing ChIP-Seq experiments of mutp53 and p63 and analyzed the transcriptome after mutp53 inactivation. Mutp53 bind to 7135 locations in vivo, with a robust overlap with p63. De novo motifs discovery recovered a p53/p63RE with high information content in sites bound by p63 and mutp53/p63, but not by mutp53 alone: these sites are rather enriched in elements of other TFs. The HaCaT p63 locations are only partially overlapping with those of normal keratinocytes; importantly, and enriched in mutp53 sites which delineate a functionally different group of target genes. Our data favour a model whereby mutp53 GOF mutants act both by tethering growth-controlling TFs and highjacking p63 to new locations

    Transcriptional Network of p63 in Human Keratinocytes

    Get PDF
    p63 is a transcription factor required for the development and maintenance of ectodermal tissues in general, and skin keratinocytes in particular. The identification of its target genes is fundamental for understanding the complex network of gene regulation governing the development of epithelia. We report a list of almost 1000 targets derived from ChIP on chip analysis on two platforms; all genes analyzed changed in expression during differentiation of human keratinocytes. Functional annotation highlighted unexpected GO terms enrichments and confirmed that genes involved in transcriptional regulation are the most significant. A detailed analysis of these transcriptional regulators in condition of perturbed p63 levels confirmed the role of p63 in the regulatory network. Rather than a rigid master-slave hierarchical model, our data indicate that p63 connects different hubs involved in the multiple specific functions of the skin

    FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes.

    Get PDF
    The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC\u27s long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a mixed neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the neuronal genes are bound by both SOX2 and AP1

    Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes

    Get PDF
    Fine regulation of exocytosis and endocytosis plays a basic role in pollen tube growth. Excess plasma membrane secreted during pollen tube elongation is known to be retrieved by endocytosis and partially reused in secretory pathways through the Golgi apparatus. Dissection of endocytosis has enabled distinct degradation pathways to be identified in tobacco pollen tubes and has shown that microtubules influence the transport of plasma membrane internalized in the tip region to vacuoles. Here we used different drugs affecting the polymerization state of microtubules together with SYP21, a marker of prevacuolar compartments, to characterize trafficking of prevacuolar compartments in Nicotiana tabacum pollen tube. Ultrastructural and biochemical analysis showed that microtubules bind SYP21-positive microsomes. Transient transformation of pollen tubes with LAT52-YFP-SYP21 revealed that microtubules play a key role in the delivery of prevacuolar compartments to tubular vacuoles
    corecore